Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Cells ; 12(9)2023 04 27.
Article En | MEDLINE | ID: mdl-37174672

The mitochondrial permeability transition pore (MPTP) is a calcium-dependent, ion non-selective membrane pore with a wide range of functions. Although the MPTP has been studied for more than 50 years, its molecular structure remains unclear. Short-term (reversible) opening of the MPTP protects cells from oxidative damage and enables the efflux of Ca2+ ions from the mitochondrial matrix and cell signaling. However, long-term (irreversible) opening induces processes leading to cell death. Ca2+ ions, reactive oxygen species, and changes in mitochondrial membrane potential regulate pore opening. The sensitivity of the pore to Ca2+ ions changes as an organism ages, and MPTP opening plays a key role in the pathogenesis of many diseases. Most studies of the MPTP have focused on elucidating its molecular structure. However, understanding the mechanisms that will inhibit the MPTP may improve the treatment of diseases associated with its opening. To evaluate the functional state of the MPTP and its inhibitors, it is therefore necessary to use appropriate methods that provide reproducible results across laboratories. This review summarizes our current knowledge of the function and regulation of the MPTP. The latter part of the review introduces two optimized methods for evaluating the functional state of the pore under standardized conditions.


Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Calcium/metabolism , Mitochondria/metabolism , Cell Death
2.
Mol Metab ; 69: 101683, 2023 03.
Article En | MEDLINE | ID: mdl-36720306

OBJECTIVE: Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy. METHODS: We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity. RESULTS: Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly. CONCLUSIONS: Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.


Adipose Tissue, Brown , Proteomics , Mice , Animals , Adipose Tissue, Brown/metabolism , Mice, Inbred C57BL , Thermogenesis/physiology , Muscle, Skeletal/metabolism , Obesity/metabolism , Mice, Inbred Strains , Adrenergic Agents/metabolism
3.
Cells ; 9(8)2020 07 23.
Article En | MEDLINE | ID: mdl-32717855

Prostate cancer is one of the most prominent cancers diagnosed in males. Contrasting with other cancer types, glucose utilization is not increased in prostate carcinoma cells as they employ different metabolic adaptations involving mitochondria as a source of energy and intermediates required for rapid cell growth. In this regard, prostate cancer cells were associated with higher activity of mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key rate limiting component of the glycerophosphate shuttle, which connects mitochondrial and cytosolic processes and plays significant role in cellular bioenergetics. Our research focused on the role of mGPDH biogenesis and regulation in prostate cancer compared to healthy cells. We show that the 42 amino acid presequence is cleaved from N-terminus during mGPDH biogenesis. Only the processed form is part of the mGPDH dimer that is the prominent functional enzyme entity. We demonstrate that mGPDH overexpression enhances the wound healing ability in prostate cancer cells. As mGPDH is at the crossroad of glycolysis, lipogenesis and oxidative metabolism, regulation of its activity by intramitochondrial processing might represent rapid means of cellular metabolic adaptations.


Glycerolphosphate Dehydrogenase/metabolism , Mitochondria/genetics , Prostatic Neoplasms/genetics , Cell Line, Tumor , HEK293 Cells , Humans , Male , Mitochondria/metabolism , Prostatic Neoplasms/metabolism , Transfection
4.
J Clin Med ; 9(4)2020 Mar 29.
Article En | MEDLINE | ID: mdl-32235386

Background: The pleomorphic clinical presentation makes the diagnosis of desminopathy difficult. We aimed to describe the prevalence, phenotypic expression, and mitochondrial function of individuals with putative disease-causing desmin (DES) variants identified in patients with an unexplained etiology of cardiomyopathy. Methods: A total of 327 Czech patients underwent whole exome sequencing and detailed phenotyping in probands harboring DES variants. Results: Rare, conserved, and possibly pathogenic DES variants were identified in six (1.8%) probands. Two DES variants previously classified as variants of uncertain significance (p.(K43E), p.(S57L)), one novel DES variant (p.(A210D)), and two known pathogenic DES variants (p.(R406W), p.(R454W)) were associated with characteristic desmin-immunoreactive aggregates in myocardial and/or skeletal biopsy samples. The individual with the novel DES variant p.(Q364H) had a decreased myocardial expression of desmin with absent desmin aggregates in myocardial/skeletal muscle biopsy and presented with familial left ventricular non-compaction cardiomyopathy (LVNC), a relatively novel phenotype associated with desminopathy. An assessment of the mitochondrial function in four probands heterozygous for a disease-causing DES variant confirmed a decreased metabolic capacity of mitochondrial respiratory chain complexes in myocardial/skeletal muscle specimens, which was in case of myocardial succinate respiration more profound than in other cardiomyopathies. Conclusions: The presence of desminopathy should also be considered in individuals with LVNC, and in the differential diagnosis of mitochondrial diseases.

5.
Biochem Biophys Res Commun ; 521(4): 1036-1041, 2020 01 22.
Article En | MEDLINE | ID: mdl-31732150

Mitochondrial ATP synthase is responsible for production of the majority of cellular ATP. Disorders of ATP synthase in humans can be caused by numerous mutations in both structural subunits and specific assembly factors. They are associated with variable pathogenicity and clinical phenotypes ranging from mild to the most severe mitochondrial diseases. To shed light on primary/pivotal functional consequences of ATP synthase deficiency, we explored human HEK 293 cells with a varying content of fully assembled ATP synthase, selectively downregulated to 15-80% of controls by the knockdown of F1 subunits γ, δ and ε. Examination of cellular respiration and glycolytic flux revealed that enhanced glycolysis compensates for insufficient mitochondrial ATP production while reduced dissipation of mitochondrial membrane potential leads to elevated ROS production. Both insufficient energy provision and increased oxidative stress contribute to the resulting pathological phenotype. The threshold for manifestation of the ATP synthase defect and subsequent metabolic remodelling equals to 10-30% of residual ATP synthase activity. The metabolic adaptations are not able to sustain proliferation in a galactose medium, although sufficient under glucose-rich conditions. As metabolic alterations occur when the content of ATP synthase drops below 30%, some milder ATP synthase defects may not necessarily manifest with a mitochondrial disease phenotype, as long as the threshold level is not exceeded.


Mitochondrial Proton-Translocating ATPases/deficiency , Cell Survival , Clone Cells , Gene Knockdown Techniques , Glycolysis , HEK293 Cells , Humans , Inhibitory Concentration 50 , Mitochondrial Proton-Translocating ATPases/metabolism , Oxidative Stress , Thermodynamics
6.
Biofactors ; 45(5): 703-711, 2019 Sep.
Article En | MEDLINE | ID: mdl-31343786

Metformin is the most widely prescribed treatment of hyperglycemia and type II diabetes since 1970s. During the last 15 years, its popularity increased due to epidemiological evidence, that metformin administration reduces incidence of cancer. However, despite the ongoing effort of many researchers, the molecular mechanisms underlying antihyperglycemic or antineoplastic action of metformin remain elusive. Most frequently, metformin is associated with modulation of mitochondrial metabolism leading to lowering of blood glucose or activation of antitumorigenic pathways. Here we review the reported effects of metformin on mitochondrial metabolism and their potential relevance as effective molecular targets with beneficial therapeutic outcome.


Antineoplastic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Mitochondria/drug effects , Neoplasms/prevention & control , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Gene Expression Regulation/drug effects , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Humans , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperglycemia/pathology , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction
7.
Oxid Med Cell Longev ; 2017: 7038603, 2017.
Article En | MEDLINE | ID: mdl-28874953

Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS) apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin) on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases), but only at very high concentrations (10-2-10-1 M) that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.


Biguanides/pharmacology , Hypoglycemic Agents/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Adipose Tissue, Brown/cytology , Animals , Glycerolphosphate Dehydrogenase/metabolism , Hydrogen Peroxide/pharmacology , Membrane Potential, Mitochondrial/drug effects , Metformin/pharmacology , Oxidation-Reduction/drug effects , Phenformin/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Succinic Acid/metabolism
8.
Clin Sci (Lond) ; 131(9): 865-881, 2017 May 01.
Article En | MEDLINE | ID: mdl-28292971

Mitochondria play an essential role in improved cardiac ischaemic tolerance conferred by adaptation to chronic hypoxia. In the present study, we analysed the effects of continuous normobaric hypoxia (CNH) on mitochondrial functions, including the sensitivity of the mitochondrial permeability transition pore (MPTP) to opening, and infarct size (IS) in hearts of spontaneously hypertensive rats (SHR) and the conplastic SHR-mtBN strain, characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischaemia-resistant brown Norway (BN) strain. Rats were adapted to CNH (10% O2, 3 weeks) or kept at room air as normoxic controls. In the left ventricular mitochondria, respiration and cytochrome c oxidase (COX) activity were measured using an Oxygraph-2k and the sensitivity of MPTP opening was assessed spectrophotometrically as Ca2+-induced swelling. Myocardial infarction was analysed in anaesthetized open-chest rats subjected to 20 min of coronary artery occlusion and 3 h of reperfusion. The IS reached 68±3.0% and 65±5% of the area at risk in normoxic SHR and SHR-mtBN strains, respectively. CNH significantly decreased myocardial infarction to 46±3% in SHR. In hypoxic SHR-mtBN strain, IS reached 33±2% and was significantly smaller compared with hypoxic SHR. Mitochondria isolated from hypoxic hearts of both strains had increased detergent-stimulated COX activity and were less sensitive to MPTP opening. The maximum swelling rate was significantly lower in hypoxic SHR-mtBN strain compared with hypoxic SHR, and positively correlated with myocardial infarction in all experimental groups. In conclusion, the mitochondrial genome of SHR modulates the IS-limiting effect of adaptation to CNH by affecting mitochondrial energetics and MPTP sensitivity to opening.


DNA, Mitochondrial/genetics , Hypoxia , Mitochondria, Heart/genetics , Animals , Blotting, Western , Chronic Disease , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Genome, Mitochondrial/genetics , Male , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Rats , Rats, Inbred BN , Rats, Inbred SHR , Rats, Transgenic , Reverse Transcriptase Polymerase Chain Reaction
9.
Eur J Heart Fail ; 19(4): 522-530, 2017 04.
Article En | MEDLINE | ID: mdl-27647766

AIMS: Iron replacement improves clinical status in iron-deficient patients with heart failure (HF), but the pathophysiology is poorly understood. Iron is essential not only for erythropoiesis, but also for cellular bioenergetics. The impact of myocardial iron deficiency (MID) on mitochondrial function, measured directly in the failing human heart, is unknown. METHODS AND RESULTS: Left ventricular samples were obtained from 91 consecutive HF patients undergoing transplantation and 38 HF-free organ donors (controls). Total myocardial iron content, mitochondrial respiration, citric acid cycle and respiratory chain enzyme activities, respiratory chain components (complex I-V), and protein content of reactive oxygen species (ROS)-protective enzymes were measured in tissue homogenates to quantify mitochondrial function. Myocardial iron content was lower in HF compared with controls (156 ± 41 vs. 200 ± 38 µg·g-1 dry weight, P < 0.001), independently of anaemia. MID (the lowest iron tercile in HF) was associated with more extensive coronary disease and less beta-blocker usage compared with non-MID HF patients. Compared with controls, HF patients displayed reduced myocardial oxygen2 respiration and reduced activity of all examined mitochondrial enzymes (all P < 0.001). MID in HF was associated with preserved activity of respiratory chain enzymes but reduced activity of aconitase and citrate synthase (by -26% and -15%, P < 0.05) and reduced expression of catalase, glutathione peroxidase, and superoxide dismutase 2. CONCLUSION: Myocardial iron content is decreased and mitochondrial functions are impaired in advanced HF. MID in HF is associated with diminished citric acid cycle enzyme activities and decreased ROS-protecting enzymes. MID may contribute to altered myocardial substrate use and to worsening of mitochondrial dysfunction that exists in HF.


Heart Failure/metabolism , Iron/metabolism , Mitochondria, Heart/metabolism , Myocardium/metabolism , Adult , Aged , Case-Control Studies , Female , Heart Failure/physiopathology , Heart Failure/surgery , Heart Transplantation , Humans , Male , Middle Aged
10.
Mol Cancer Ther ; 15(12): 2875-2886, 2016 12.
Article En | MEDLINE | ID: mdl-27765848

Pancreatic cancer is one of the hardest-to-treat types of neoplastic diseases. Metformin, a widely prescribed drug against type 2 diabetes mellitus, is being trialed as an agent against pancreatic cancer, although its efficacy is low. With the idea of delivering metformin to its molecular target, the mitochondrial complex I (CI), we tagged the agent with the mitochondrial vector, triphenylphosphonium group. Mitochondrially targeted metformin (MitoMet) was found to kill a panel of pancreatic cancer cells three to four orders of magnitude more efficiently than found for the parental compound. Respiration assessment documented CI as the molecular target for MitoMet, which was corroborated by molecular modeling. MitoMet also efficiently suppressed pancreatic tumors in three mouse models. We propose that the novel mitochondrially targeted agent is clinically highly intriguing, and it has a potential to greatly improve the bleak prospects of patients with pancreatic cancer. Mol Cancer Ther; 15(12); 2875-86. ©2016 AACR.


Antimetabolites, Antineoplastic/pharmacology , Metformin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Antimetabolites, Antineoplastic/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Female , Humans , Hydrogen-Ion Concentration , Membrane Potential, Mitochondrial , Metformin/chemistry , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Oxygen Consumption , Pancreatic Neoplasms/drug therapy , Protein Binding , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
11.
J Bioenerg Biomembr ; 48(4): 363-73, 2016 08.
Article En | MEDLINE | ID: mdl-27530389

A compound with promising anticancer properties, 3-bromopyruvate (3-BP) is a synthetic derivative of a pyruvate molecule; however, its toxicity in non-malignant cells has not yet been fully elucidated. Therefore, we elected to study the effects of 3-BP on primary hepatocytes in monolayer cultures, permeabilized hepatocytes and isolated mitochondria. After a 1-h treatment with 100 µM 3-BP cell viability of rat hepatocytes was decreased by 30 % as measured by the WST-1 test (p < 0.001); after 3-h exposure to ≥200 µM 3-BP lactate dehydrogenase leakage was increased (p < 0.001). Reactive oxygen species production was increased in the cell cultures after a 1-h treatment at concentrations ≥100 µmol/l (p < 0.01), and caspase 3 activity was increased after a 20-h incubation with 150 µM and 200 µM 3-BP (p < 0.001). This toxic effect of 3-BP was also proved using primary mouse hepatocytes. In isolated mitochondria, 3-BP induced a dose- and time-dependent decrease of mitochondrial membrane potential during a 10-min incubation both with Complex I substrates glutamate + malate or Complex II substrate succinate, although this decrease was more pronounced with the latter. We also measured the effect of 3-BP on respiration of isolated mitochondria. ADP-activated respiration was inhibited by 20 µM 3-BP within 10 min. Similar effects were also found in permeabilized hepatocytes of both species.


Hepatocytes/drug effects , Mitochondrial Diseases/chemically induced , Pyruvates/toxicity , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Hepatocytes/cytology , Hepatocytes/ultrastructure , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria, Liver/drug effects , Mitochondrial Diseases/physiopathology , Pyruvates/pharmacology , Rats , Reactive Oxygen Species/metabolism , Time Factors
12.
Physiol Genomics ; 48(6): 420-7, 2016 06.
Article En | MEDLINE | ID: mdl-27113533

Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat.


Adipose Tissue, Brown/metabolism , Autocrine Communication/physiology , Glucose/metabolism , Palmitates/metabolism , Resistin/genetics , Adipose Tissue, Brown/physiology , Animals , Autocrine Communication/genetics , Fatty Acids, Nonesterified/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Lipid Metabolism/physiology , Male , Mice , Mice, Inbred BALB C , Mitochondria/genetics , Mitochondria/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Obesity/metabolism , Obesity/physiopathology , Oxidation-Reduction , Rats , Rats, Inbred SHR , Rats, Transgenic , Transcriptome/genetics
13.
Mol Cell Biochem ; 412(1-2): 147-54, 2016 Jan.
Article En | MEDLINE | ID: mdl-26715132

Most of the experimental studies have revealed that female heart is more tolerant to ischemia/reperfusion (I/R) injury as compared with the male myocardium. It is widely accepted that mitochondrial dysfunction, and particularly mitochondrial permeability transition pore (MPTP) opening, plays a major role in determining the extent of cardiac I/R injury. The aim of the present study was, therefore, to analyze (i) whether calcium-induced swelling of cardiac mitochondria is sex-dependent and related to the degree of cardiac tolerance to I/R injury and (ii) whether changes in MPTP components-cyclophilin D (CypD) and ATP synthase-can be involved in this process. We have observed that in mitochondria isolated from rat male and female hearts the MPTP has different sensitivity to the calcium load. Female mitochondria are more resistant both in the extent and in the rate of the mitochondrial swelling at higher calcium concentration (200 µM). At low calcium concentration (50 µM) no differences were observed. Our data further suggest that sex-dependent specificity of the MPTP is not the result of different amounts of ATP synthase and CypD, or their respective ratio in mitochondria isolated from male and female hearts. Our results indicate that male and female rat hearts contain comparable content of MPTP and its regulatory protein CypD; parallel immunodetection revealed also the same contents of adenine nucleotide translocator or voltage-dependent anion channel. Increased resistance of female heart mitochondria thus cannot be explained by changes in putative components of MPTP, and rather reflects regulation of MPTP function.


Calcium/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Sex Factors , Animals , Female , Male , Mitochondrial Permeability Transition Pore , Rats
14.
Oxid Med Cell Longev ; 2016: 7573131, 2016.
Article En | MEDLINE | ID: mdl-28074116

Epigallocatechin gallate (EGCG) is a green tea antioxidant with adverse effects on rat liver mitochondria and hepatocytes at high doses. Here, we assessed whether low doses of EGCG would protect these systems from damage induced by tert-butyl hydroperoxide (tBHP). Rat liver mitochondria or permeabilized rat hepatocytes were pretreated with EGCG and then exposed to tBHP. Oxygen consumption, mitochondrial membrane potential (MMP), and mitochondrial retention capacity for calcium were measured. First, 50 µM EGCG or 0.25 mM tBHP alone increased State 4 Complex I-driven respiration, thus demonstrating uncoupling effects; tBHP also inhibited State 3 ADP-stimulated respiration. Then, the coexposure to 0.25 mM tBHP and 50 µM EGCG induced a trend of further decline in the respiratory control ratio beyond that observed upon tBHP exposure alone. EGCG had no effect on MMP and no effect, in concentrations up to 50 µM, on mitochondrial calcium retention capacity. tBHP led to a decline in both MMP and mitochondrial retention capacity for calcium; these effects were not changed by pretreatment with EGCG. In addition, EGCG dose-dependently enhanced hydrogen peroxide formation in a cell- and mitochondria-free medium. Conclusion. Moderate nontoxic doses of EGCG were not able to protect rat liver mitochondria and hepatocytes from tBHP-induced mitochondrial dysfunction.


Catechin/analogs & derivatives , Hepatocytes/drug effects , Mitochondria, Liver/drug effects , tert-Butylhydroperoxide/toxicity , Animals , Calcium/metabolism , Catechin/pharmacology , Cells, Cultured , Hepatocytes/cytology , Hepatocytes/metabolism , Hydrogen Peroxide/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/metabolism , Oxygen Consumption/drug effects , Rats , Rats, Wistar
15.
Am J Physiol Gastrointest Liver Physiol ; 309(2): G100-11, 2015 Jul 15.
Article En | MEDLINE | ID: mdl-26045616

Nonalcoholic fatty liver disease is associated with chronic oxidative stress. In our study, we explored the antioxidant effect of antidiabetic metformin on chronic [high-fat diet (HFD)-induced] and acute oxidative stress induced by short-term warm partial ischemia-reperfusion (I/R) or on a combination of both in the liver. Wistar rats were fed a standard diet (SD) or HFD for 10 wk, half of them being administered metformin (150 mg·kg body wt(-1)·day(-1)). Metformin treatment prevented acute stress-induced necroinflammatory reaction, reduced alanine aminotransferase and aspartate aminotransferase serum activity, and diminished lipoperoxidation. The effect was more pronounced in the HFD than in the SD group. The metformin-treated groups exhibited less severe mitochondrial damage (markers: cytochrome c release, citrate synthase activity, mtDNA copy number, mitochondrial respiration) and apoptosis (caspase 9 and caspase 3 activation). Metformin-treated HFD-fed rats subjected to I/R exhibited increased antioxidant enzyme activity as well as attenuated mitochondrial respiratory capacity and ATP resynthesis. The exposure to I/R significantly increased NADH- and succinate-related reactive oxygen species (ROS) mitochondrial production in vitro. The effect of I/R was significantly alleviated by previous metformin treatment. Metformin downregulated the I/R-induced expression of proinflammatory (TNF-α, TLR4, IL-1ß, Ccr2) and infiltrating monocyte (Ly6c) and macrophage (CD11b) markers. Our data indicate that metformin reduces mitochondrial performance but concomitantly protects the liver from I/R-induced injury. We propose that the beneficial effect of metformin action is based on a combination of three contributory mechanisms: increased antioxidant enzyme activity, lower mitochondrial ROS production, and reduction of postischemic inflammation.


Antioxidants/pharmacology , Liver/drug effects , Metformin/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Reperfusion Injury/prevention & control , Adenosine Triphosphate/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Cytoprotection , Diet, High-Fat , Disease Models, Animal , Energy Metabolism/drug effects , Inflammation Mediators/metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Male , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Rats, Wistar , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Time Factors
16.
Oxid Med Cell Longev ; 2015: 476180, 2015.
Article En | MEDLINE | ID: mdl-25918582

Epigallocatechin-3-gallate (EGCG) is the main compound of green tea with well-described antioxidant, anti-inflammatory, and tumor-suppressing properties. However, EGCG at high doses was reported to cause liver injury. In this study, we evaluated the effect of EGCG on primary culture of rat hepatocytes and on rat liver mitochondria in permeabilized hepatocytes. The 24-hour incubation with EGCG in concentrations of 10 µmol/L and higher led to signs of cellular injury and to a decrease in hepatocyte functions. The effect of EGCG on the formation of reactive oxygen species (ROS) was biphasic. While low doses of EGCG decreased ROS production, the highest tested dose induced a significant increase in ROS formation. Furthermore, we observed a decline in mitochondrial membrane potential in cells exposed to EGCG when compared to control cells. In permeabilized hepatocytes, EGCG caused damage of the outer mitochondrial membrane and an uncoupling of oxidative phosphorylation. EGCG in concentrations lower than 10 µmol/L was recognized as safe for hepatocytes in vitro.


Catechin/analogs & derivatives , Hepatocytes/drug effects , Mitochondria, Liver/drug effects , Animals , Caspase 3/metabolism , Catechin/toxicity , Cell Survival/drug effects , Cells, Cultured , Hepatocytes/cytology , Hepatocytes/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Microscopy, Fluorescence , Mitochondria, Liver/metabolism , Oxidative Phosphorylation/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Tea/chemistry , Tea/metabolism , Tumor Necrosis Factor-alpha/metabolism
17.
Appl Physiol Nutr Metab ; 40(3): 280-91, 2015 Mar.
Article En | MEDLINE | ID: mdl-25723909

The aim of this study was to estimate the effect of carnitine supplementation on lipid disorders and peripheral tissue insulin sensitivity in a non-obese animal model of insulin resistance, the hereditary hypertriglyceridemic (HHTg) rat. Male HHTg rats were fed a standard diet, and half of them received daily doses of carnitine (500 mg·kg(-1) body weight) for 8 weeks. Rats of the original Wistar strain were used for comparison. HHTg rats exhibited increased urinary excretion of free carnitine and reduced carnitine content in the liver and blood. Carnitine supplementation compensated for this shortage and promoted urinary excretion of acetylcarnitine without any signs of (acyl)carnitine accumulation in skeletal muscle. Compared with their untreated littermates, carnitine-treated HHTg rats exhibited lower weight gain, reduced liver steatosis, lower fasting triglyceridemia, and greater reduction of serum free fatty acid content after glucose load. Carnitine treatment was associated with increased mitochondrial biogenesis and oxidative capacity for fatty acids, amelioration of oxidative stress, and restored substrate switching in the liver. In skeletal muscle (diaphragm), carnitine supplementation was associated with significantly higher palmitate oxidation and a more favorable complete to incomplete oxidation products ratio. Carnitine supplementation further enhanced insulin sensitivity ex vivo. No effects on whole-body glucose tolerance were observed. Our data suggest that some metabolic syndrome-related disorders, particularly fatty acid oxidation, steatosis, and oxidative stress in the liver, could be attenuated by carnitine supplementation. The effect of carnitine could be explained, at least partly, by enhanced substrate oxidation and increased fatty acid transport from tissues in the form of short-chain acylcarnitines.


Carnitine/pharmacology , Hypertriglyceridemia/genetics , Lipid Metabolism/drug effects , Oxidative Stress/drug effects , Animals , Carnitine/administration & dosage , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/metabolism , Carnitine/urine , DNA, Mitochondrial/genetics , Dietary Supplements , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Genetic Predisposition to Disease , Homeostasis , Hypertriglyceridemia/metabolism , Insulin Resistance , Kidney/drug effects , Kidney/metabolism , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Rats
18.
Biochem J ; 466(3): 601-11, 2015 Mar 15.
Article En | MEDLINE | ID: mdl-25588698

Mutations in the MT-ATP6 gene are frequent causes of severe mitochondrial disorders. Typically, these are missense mutations, but another type is represented by the 9205delTA microdeletion, which removes the stop codon of the MT-ATP6 gene and affects the cleavage site in the MT-ATP8/MT-ATP6/MT-CO3 polycistronic transcript. This interferes with the processing of mRNAs for the Atp6 (Fo-a) subunit of ATP synthase and the Cox3 subunit of cytochrome c oxidase (COX). Two cases described so far presented with strikingly different clinical phenotypes-mild transient lactic acidosis or fatal encephalopathy. To gain more insight into the pathogenic mechanism, we prepared 9205delTA cybrids with mutation load ranging between 52 and 99% and investigated changes in the structure and function of ATP synthase and the COX. We found that 9205delTA mutation strongly reduces the levels of both Fo-a and Cox3 proteins. Lack of Fo-a alters the structure but not the content of ATP synthase, which assembles into a labile, ∼60 kDa smaller, complex retaining ATP hydrolytic activity but which is unable to synthesize ATP. In contrast, lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. Consequently, the diminished mitochondrial content of COX and non-functional ATP synthase prevent most mitochondrial ATP production. The biochemical effects caused by the 9205delTA microdeletion displayed a pronounced threshold effect above ∼90% mutation heteroplasmy. We observed a linear relationship between the decrease in subunit Fo-a or Cox3 content and the functional presentation of the defect. Therefore we conclude that the threshold effect originated from a gene-protein level.


DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Mitochondrial Proton-Translocating ATPases/physiology , Mutation/genetics , Cell Line , Electron Transport Complex IV/metabolism , Gene Deletion , Humans , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/deficiency , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Protein Subunits/deficiency , Protein Subunits/genetics , Protein Subunits/metabolism
19.
Int J Biochem Cell Biol ; 53: 409-13, 2014 Aug.
Article En | MEDLINE | ID: mdl-24953557

α-Tocopheryl succinate (TOS), a redox-silent analogue of vitamin E, suppresses cell growth in a number of clinical and experimental cancers, inhibits mitochondrial succinate dehydrogenase (SDH) and activates reactive oxygen species (ROS) generation. The aim of this study was to test whether TOS also inhibits glycerol-3-phosphate dehydrogenase (mGPDH), another flavoprotein-dependent enzyme of the mitochondrial respiratory chain because there are differences between electron transfer pathway from SDH and mGPDH to coenzyme Q pool. For our experiments brown adipose tissue mitochondria with high expression of mGPDH were used. Our data showed that inhibition of glycerol-3-phosphate (GP)-dependent oxygen consumption by TOS was more pronounced than the succinate (SUC)-dependent one (50% inhibition was reached at 10 µmol/l TOS vs. 80 µmol/l TOS, respectively). A comparison of the inhibitory effect of TOS on GP-oxidase, GP-cytochrome c oxidoreductase and GP-dehydrogenase activities showed that TOS directly interacts with the dehydrogenase. After TOS application the GP-dependent generation of ROS was highly depressed. It may thus be concluded that TOS-induced inhibition of mGPDH is more pronounced than TOS-induced inhibition of SDH and that the inhibitory effect of TOS for both substrates is exerted at different locations of the particular dehydrogenases. Our data indicate that the inhibition of mGPDH activity could also play a role in TOS-induced growth suppression in neoplastic cells.


Carcinogenesis/genetics , Glycerolphosphate Dehydrogenase/biosynthesis , Mitochondria/enzymology , alpha-Tocopherol/administration & dosage , Adipose Tissue, Brown/enzymology , Animals , Cricetinae , Gene Expression Regulation, Neoplastic/drug effects , Glycerolphosphate Dehydrogenase/antagonists & inhibitors , Humans , Mitochondria/drug effects , Neoplasms/drug therapy , Neoplasms/enzymology , Oxygen Consumption/drug effects , Reactive Oxygen Species/metabolism
20.
Oxid Med Cell Longev ; 2014: 752506, 2014.
Article En | MEDLINE | ID: mdl-24847414

Oxidative stress and mitochondrial dysfunction play an important role in the pathogenesis of nonalcoholic fatty liver disease and toxic liver injury. The present study was designed to evaluate the effect of exogenous inducer of oxidative stress (tert-butyl hydroperoxide, tBHP) on nonfatty and steatotic hepatocytes isolated from the liver of rats fed by standard and high-fat diet, respectively. In control steatotic hepatocytes, we found higher generation of ROS, increased lipoperoxidation, an altered redox state of glutathione, and decreased ADP-stimulated respiration using NADH-linked substrates, as compared to intact lean hepatocytes. Fatty hepatocytes exposed to tBHP exert more severe damage, lower reduced glutathione to total glutathione ratio, and higher formation of ROS and production of malondialdehyde and are more susceptible to tBHP-induced decrease in mitochondrial membrane potential. Respiratory control ratio of complex I was significantly reduced by tBHP in both lean and steatotic hepatocytes, but reduction in NADH-dependent state 3 respiration was more severe in fatty cells. In summary, our results collectively indicate that steatotic rat hepatocytes occur under conditions of enhanced oxidative stress and are more sensitive to the exogenous source of oxidative injury. This confirms the hypothesis of steatosis being the first hit sensitizing hepatocytes to further damage.


Hepatocytes/drug effects , Oxidative Stress/drug effects , tert-Butylhydroperoxide/toxicity , Animals , Cells, Cultured , Diet, High-Fat , Glutathione/metabolism , Hepatocytes/metabolism , L-Lactate Dehydrogenase/metabolism , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Membrane Potential, Mitochondrial/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
...